Content Based Medical Image Retrieval System (CBMIRS) Using Patch Based Representation
نویسندگان
چکیده
This research work is to develop an efficient and powerful medical search engine to classify and search the radiographic medical images. It focuses on bag of visual words image representation and a similarity matching technique to represent match and retrieve the similar images. This work addresses the issues in content based image retrieval for medical images. In this system can handles different categories of medical images in organ level and the pathology level for chest X-ray images. This simple, efficient medical image categorization and retrieval system in large radiographic archives (IRMA database) is developed for a medicine physicians and researchers those who are interested in being able to retrieve medical images based on low level features. This would make these systems more helpful for radiologists in medical settings, researches in medical analysis and medical students as well as teachers in academic healthcare environments. The methodology presented is based on local patch representation of the image content using a bag of visual words approach with a kernel based SVM classifier. The system supports the classification of X-ray images and retrieval of similar medical images for given input query image. Key terms: CBIR, IRMA, Picture archiving and Communication System, Bag of Visual Words, Computer Aided Diagnosis, Chest Radiography, image Patches.
منابع مشابه
Image retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملContent Based Medical Image Retrieval Using Texture Descriptor
In the medical field, images, and especially digital images, are produced in ever increasing quantities and used for diagnostics and therapy. Content based access to medical images for supporting clinical decision making has been proposed that would ease the management of clinical data and scenarios for the integration of content-based access methods into Picture Archiving and Communication Sys...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کامل